Abstract

Rice is a staple food for more than half of the global population due to its food security and sustainable development. Weeds compete with crops for sunlight and indispensable nutrients, affecting the yield and quality of crops. Breeding herbicide-tolerant rice varieties paired with herbicide application is expected to help with weed control. In this study, 194 Japonica/Geng rice varieties or lines collected from the Huanghuaihai region of China were screened by Kompetitive Allele-Specific PCR (KASP) markers based on four mutation sites within OsALS1 (LOC_Os02g30630), which is the target of imidazolinone (IMI) herbicides. Only the OsALS1627N haplotype was identified in 18 varieties, including the previously reported Jingeng818 (JG818), and its herbicide resistance was validated by treatment with three IMIs. To investigate the origin of the OsALS1627N haplotype in the identified varieties, six codominant PCR-based markers tightly linked with OsALS1 were developed. PCR analysis revealed that the other 17 IMI-tolerant varieties were derived from JG818. We randomly selected three IMI-tolerant varieties for comparative whole-genome resequencing with known receptor parent varieties. Sequence alignment revealed that more loci from JG818 have been introduced into IMI-tolerant varieties. However, all three IMI-tolerant varieties carried clustered third type single nucleotide polymorphism (SNP) sites from unknown parents, indicating that these varieties were not directly derived from JG818, whereas those from different intermediate improved lines were crossed with JG818. Overall, we found that only OsALS1627N from JG818 has been broadly introduced into the Huanghuaihai region of China. Additionally, the 17 identified IMI-tolerant varieties provide alternative opportunities for improving such varieties along with other good traits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.