Abstract
In this work, a coupled lattice Boltzmann model is proposed to study the gas hydrate dissociation with consideration of ice evolution in microporous media. The reliability of this model is verified by simulating the dissociation of xenon hydrate and the freezing of water droplets, respectively. The initial temperature is one of the influences on methane hydrate dissociation. In this paper, methane hydrate dissociation and ice evolution characteristics have been analyzed at the initial temperature of 270.5 K–278 K. Within this temperature range, a maximum percentage of methane hydrate dissociation can be obtained near the freezing point. Ice formation inhibits and delays the methane hydrate dissociation at the initial stage. It is demonstrated that for the whole process, heat release caused by the ice-water mixture formation facilitates methane hydrate dissociation. However, the ice formation stage has negative impacts on hydrate dissociation time. Additionally, the whole dissociation can be divided into four processes by analyzing the evolution of dissociation percentage and ice saturation. Especially, three types of ice formation positions are concluded. They are related to the hydrate structure and occurrence state. This paper provides a reference of the effect of ice evolution on methane hydrate dissociation in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.