Abstract

Forming conical parts is one of the complex and difficult fields in sheet-metal forming processes. Because of low-contact area of the sheet with punch tip in the initial stages of forming, bursting occurs on the sheet. Moreover, since most of the sheet surface in the area between the punch tip and blank holder is free, wrinkles appear on the wall of the drawing part. Thus, these parts are normally formed in industry by spinning, explosive forming, or multi-stage deep drawing processes. In this paper, forming pure copper and St14 conical–cylindrical cups in the hydrodynamic deep drawing process was studied using finite element (FE) simulation and experiment. The effect of pressure path on the occurrence of defects and thickness distribution and drawing ratio of the sheet was studied. It was concluded that at low pressures, bursting occurs on the contact area of sheet with punch tip. At higher pressures, the cup was formed, but the wall thickness distribution depends on the pressure path. It was also illustrated that for the pressure path with a certain maximum amount, the workpiece was formed adequately with minimum sheet thickness reduction. Internal pressures more than this maximum amounts did not affect on the thickness distribution. By applying the desired pressure path, conical–cylindrical cups with high deep drawing ratio were achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.