Abstract

The hydraulic balance of heating network is considered as a pre-condition for the implementation of low temperature district heating (LTDH). Its imbalance result into high energy consumption and heat-losses in the network. In this study, a novel hydraulic model is presented which investigates hydraulic imbalance in the LTDH network, using real weather and hourly monitored operational heating data from an existing boiler based building. Analysis of delta t in space-heating system shows that the delta t is maximum when the outside air temperature is lowest and it decreases with increase in outside air temperature. Furthermore, the hydraulic imbalance is analysed for four different control scenarios with the aim to find an optimum scenario with minimum pumping power, energy consumption and heat-losses in the LTDH network. Results show that the hydraulic imbalance is due to the absence of flow-limiters and balancing valves on the return pipe, and thermostatic radiator valves (TRVs) alone are unable to maintain hydraulic balance in the space-heating system of buildings. Moreover, the control scenario with variable flow-rate and fixed supply water temperature from the sub-station is found to be optimum. Compared to the constant flow-rate scenario, the pumping power, energy consumption and heat-losses in the LTDH network are reduced by approximately 2%, 63% and 14%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.