Abstract

In this research, fluorinated silica materials were prepared through sol–gel processing with tetraethylorthosilicate (TEOS), triethoxymethylsilane (MTES), and trimethoxyhexadecylsilane (HDTMES), using a fluorinated solution (FS) under acidic medium. The fluorinated solution (FS) was obtained by diluting the perfluorooctanoic acid (PFOA) in 2-propanol. These fluorinated sol–gel silica materials were placed on the glass surfaces in order to achieve the antireflective and hydrophobic fluorinated hybrid films. The structure and surface properties of the final samples were investigated by Fourier transform infrared spectroscopy (FTIR), ultraviolet/visible spectroscopy, thermogravimetric analysis (TGA), atomic force microscopy (AFM), and contact angle (CA) determinations. FTIR spectra demonstrated the presence of a silica network modified with alkyl and fluoroalkyl groups. Thermal analysis showed that the fluorinated sol–gel silica materials prepared with HDTMES have a good thermostability in comparison with other samples. Ultraviolet/visible spectra indicated that the fluorinated hybrid films present a reflectance of ~9.5%, measured at 550 nm. The water contact angle analysis found that the wettability of fluorinated hybrid films was changed from hydrophilic (64°) to hydrophobic (~104°). These hybrid films based on fluorinated sol–gel silica materials can be useful in various electronics and optics fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call