Abstract

Human β-defensins present in saliva have a broad spectrum of antimicrobial activities that work against infections in oral cavity. To provide a better understanding of these molecules' properties and functions at the molecular level, we have investigated and compared the important structural properties of human β-defensin-1, -2 and -3 using molecular dynamics simulations. Our results have shown that human β-defensin-3 has a more flexible structure in water than the other two because of its high hydrophilicity, low β-sheet content and high repulsive forces between its charged residues. Moreover, we found that the location of the salt bridges is important in protein's stability in water. Molecular dynamics simulations of human β-defensins 1, 2 and 3 revealed that the hbd-3 is more flexible in water than hbd-1 and hbd-2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call