Abstract

Isothermal compression experiments of vapor-grown carbon nanofiber (VGCNF)-reinforced aluminum matrix (VGCNF/Al) composites and pure aluminum (Al) were conducted at deformation temperatures from 573 K to 723 K and strain rates from 0.01 to 1 s−1. It was found that the VGCNF/Al composites and pure Al had depressed dynamic recrystallization percent in the high-power dissipation efficiency regions. Upon comparing the processing maps for different strains, it was found that the high-power dissipation efficiency regions of the VGCNF/Al composites and pure Al moved from the low strain rate region to the high strain rate region. The kernel average misorientation images showed that there were lots of low-angle grain boundaries in the high strain rate region. The low-angle grain boundaries did not have enough time to transform into high-angle grain boundaries, resulting in a depressed percentage of dynamic recrystallization. The addition of VGCNFs led to an increased low-angle grain boundary density. As a result, the phenomenon of high-power dissipation regions in the high strain rate regions correspond to the low percentage of dynamic recrystallization was more obvious.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.