Abstract
The latest research results show that there is a unified magma system and heating channel beneath the Arxan volcanic field, indicating a potential risk of eruption. The Arxan volcanic field features multiple gas emission sites (e.g., Jinjianggou hot springs and Yinjianggou hot springs) and exhibits strong hydrothermal activity. In this study, measurements of the hot spring gas composition and soil CO2 flux in the Arxan Holocene volcanic field were conducted, and the results were combined with previous research results to analyze the degassing characteristics of this region. The results show that the volcanic gases in the Arxan volcanic field are composed of 0.07%–1.09% CO2, 0.33–12 ppm CH4, 1.57–53 ppm H2, 800–30,241 ppm He, and 1.14%–1.86% Ar. The He content in this area is notably higher than that in other dormant volcanoes in China. This difference is possibly caused by U–Th decay in the Mesozoic granodiorite and acidic volcanic rocks in the study area, which can produce substantial radiogenic He. The soil gas concentrations near the Jinjianggou and Yinjianggou hot springs are higher than those of two Holocene volcanoes. The peak CO2 concentration in the soil near the Jinjianggou hot spring can reach 35,161 ppm. The single-site soil microseepage CO2 flux in the Arxan volcanic field is 4.66–107.18 g m−2 d−1, and the estimated annual CO2 emission flux from the volcanic field to the atmosphere is 0.63 × 105 t, which also demonstrates that soil CO2 flux of Arxan volcano is comparable to the soil CO2 emission level of the Iwojima volcano.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.