Abstract

A novel gallium arsenide (GaAs) planar Gunn diode design with shaped anode and cathode contacts using Monte Carlo simulations has been shown to produce significantly higher frequency fine structure components in the output waveform than the natural transit time frequency of the diode. We have investigated devices without a feedback potential and devices with a feedback potential (in the delayed mode) and have shown 350-GHz fine structure frequency components in a device with a nominal transit time frequency of 70 GHz is possible. This is the first observation of such stable repeating high-frequency components in a Gunn diode, giving potential for very high-frequency power generation and other wave-shaping applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call