Abstract

The results of studying the switching capabilities of recently developed high-voltage integral pulse thyristors (HIPTs) with a working area of 0.45 cm2 and an operating voltage of 3 kV are presented. A silicon chip of a thyristor consists of a large number of microthyristor cells that are enabled strictly synchronously with a control-current pulse, thus providing low switching energy losses and allowing a current of up to 8 kA at a pulse duration of 1.5 μs to be switched within 500 ns in a single-pulse mode. The HIPT switching-off time is several microseconds when, after a power-current pulse terminates, a field-effect transistor with a low (tens of milliohms) channel resistance closes the emitter–base circuit. The low switching energy loss and the short switching-off time made it possible to use HIPTs in the mode of switching current pulses with an amplitude of 500 А at a frequency of 50 kHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call