Abstract

The high-temperature oxidation of homogeneous and gradient coatings based on Ni-Cr-Al obtained by detonation spraying is investigated. To assess the resistance to high-temperature oxidation of Ni-Cr-Al coatings, cyclic tests were carried out at a temperature of 1000 °C for 50 cycles. The assessment of high-temperature oxidizing ability was carried out by measuring the weight gain of samples after each cycle. After high-temperature oxidation tests, the morphology and chemical composition of the coating structure in the cross-section were investigated using SEM/EDS. The phase composition of the samples was studied by X-ray diffraction (XRD) phase analysis. Visual analysis of the sample surface under study after high-temperature oxidation showed that the surface of homogeneous or gradient Ni-Cr-Al coatings remained undamaged. The results of X-ray phase analysis showed the peaks of Al2O3 in Ni-Cr-Al gradient coatings are more expressed and intense compared to homogeneous coatings of Ni-Cr-Al. Gradient coatings also retain an increased chromium content compared to homogeneous Ni-Cr-Al coatings. This increased chromium content can slow down mixing or diffusion between different phases of the material at their boundary, which, in turn, contributes to increasing the resistance of the gradient coating to oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.