Abstract
Using the quartz crystal microbalance (QCM) technique, we demonstrate that the contribution of Hg adsorption and absorption on the sensor response profile can be distinguished by studying the dynamic response curve of QCM based Hg vapor sensors that employ an ultra-thin film of Au in the range of 10 to 40 nm thickness as the sensitive layer. The response magnitudes of the QCMs were extrapolated to zero thickness (ETZT) in an attempt to determine the contribution of adsorbed Hg on the sensor response magnitude and response profile. In general, the ratio of adsorbed to absorbed Hg on Au films is found to decrease with increased Hg vapor concentration. Furthermore, the same ratio was observed to decrease with increasing Au film thickness. The 10 nm and 40 nm Au films for example were found to contain adsorbed Hg content of 43.8% and 16.4%, respectively, with the balance attributed to absorption/amalgamation, when exposed to Hg vapor concentration of 10.55 mg m−3 for a period of 14 hours and an operating temperature of 28 °C. In addition, the QCMs were characterized using secondary ion mass spectroscopy depth profiling in order to study the diffusion behaviour of Hg in the Au surfaces. It is deduced that in order to reduce Hg accumulation in Au thin films, a non-continuous type film (similar to the 10 nm ultra-thin Au sensitive layer morphology) would be more functional as a Hg sensitive layer where quick absorption and desorption processes are required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.