Abstract

Neurological complications often occur during cardiopulmonary bypass (CPB). Hypoperfusion of brain tissue due to diminished cerebral autoregulation (CA) and thromboembolism from atherosclerotic plaque reduce the cerebral oxygen supply and increase the risk of perioperative stroke. To improve the outcome of cardiac surgeries, patient-specific computational fluid dynamic (CFD) models can be used to investigate the blood flow during CPB.In this study, we establish a computational model of CPB which includes cerebral autoregulation and movement of aortic walls on the basis of in vivo measurements. First, the Baroreflex mechanism, which plays a leading role in CA, is represented with a 0-D control circuit and coupled to the 3-D domain with differential equations as boundary conditions. Additionally a two-way coupled fluid–structure interaction (FSI) model with CA is set up. The wall shear stress (WSS) distribution is computed for the whole FSI domain and a comparison to rigid wall CFD is made. Constant flow and pulsatile flow CPB is considered.Rigid wall CFD delivers higher wall shear stress values than FSI simulations, especially during pulsatile perfusion. The flow rates through the supraaortic vessels are almost not affected, if considered as percentages of total cannula output. The developed multiphysic multiscale framework allows deeper insights into the underlying mechanisms during CPB on a patient-specific basis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call