Abstract

To probe the distortions of the heme groups resulting from heme-apoprotein interaction in the isolated subunits of oxygenated human hemoglobin (i.e., alpha SH-oxyHbA and beta SH-oxyHbA), the dispersion of the depolarization ratio of the Raman lines at 1375 cm-1 (nu 4) and 1638 cm-1 (nu 10) was measured at various pHs. The data were analyzed in terms of vibronic coupling parameters which depend on symmetry-classified normal distortions of the heme groups. In the alpha-chain the nu 10 mode is not affected by symmetry-lowering distortions. In the beta-chain, however, this mode is significantly influenced by asymmetric B1g and B2g distortions. This was interpreted in terms of different interactions between the peripheral substituents and the porphyrin macrocycle in the respective chains. The nu 4 mode of both chains is subject to B1g (B2g) and A2g distortions, which are more pronounced in beta SH-oxyHbA. This is most probably due to differences in the repulsive interactions between the proximal imidazole and the pyrrole. While the depolarization ratio of both lines investigated is pH-independent in alpha SH-oxyHbA, it exhibits a significant pH dependence in beta SH-oxyHbA. This parallels the finding that the isolated beta-chains exhibit a Bohr effect whereas the alpha-chains do not. Consequently, the pH dependence of the coupling parameters and the Bohr effect of beta SH-oxyHbA could be rationalized in terms of the very same proton binding processes.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call