Abstract

Generation of helium ions is experimentally investigated with a constricted direct current (DC) plasma ion source operated at layered-glow mode, in which electrons could be accelerated through multiple potential structures so as to generate helium ions including He(2+) by successive ionization collisions in front of an extraction aperture. The helium discharge is sustained with the formation of a couple of stable layers and the plasma ball with high density is created near the extraction aperture at the operational pressure down to 0.6 Torr with concave cathodes. The ion beam current extracted with an extraction voltage of 5 kV is observed to be proportional to the discharge current and inversely proportional to the operating pressure, showing high current density of 130 mA/cm(2) and power density of 0.52 mA/cm(2)/W. He(2+) ions, which were predicted to be able to exist due to multiple-layer potential structure, are not observed. Simple calculation on production of He(2+) ions inside the plasma ball reveals that reduced operating pressure and increased cathode area will help to generate He(2+) ions with the layered-glow DC discharge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call