Abstract

An efficient removal of He ash by active pumping in future fusion devices is necessary to avoid fuel dilution and not degrade the core confinement properties. Therefore, a deep understanding of the underlying physics mechanisms is mandatory. Helium exhaust has been experimentally investigated at the ASDEX Upgrade tokamak. This is an ideal test environment, thanks to the ITER-like divertor geometry, an extensive diagnostics coverage and the presence of plasma-facing components made of tungsten. The exhaust efficiency, characterized by the He compression in the divertor, was found to improve with increasing divertor neutral pressure but to degrade with detachment. A multi-reservoir particle balance model was developed to interpret the observed exhaust dynamics, accounting for plasma transport and wall retention. The limited performance of the pumping system and the efficient helium retention capability of the tungsten wall were identified to have the strongest impact on the exhaust dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.