Abstract

Lattice Boltzmann method (LBM) was used to simulate two-dimensional MHD Al2O3/water nanofluid flow and heat transfer in an enclosure with a semicircular wall and a triangular heating obstacle. The effects of nanoparticle volume fraction ([Formula: see text]), Rayleigh number [Formula: see text], Hartmann number [Formula: see text] and heating obstacle position (Cases 1–7) on flow pattern, temperature distribution and rate of heat transfer were investigated. The results show that with the enhancing Rayleigh number, the increasing nanoparticle volume fraction and the reducing Hartmann number, an enhancement in the average Nusselt number and the heat transfer appeared. The effect of Ha on the average Nu increases by increasing the Ra. It can also be found that the action of changing the heating obstacle position on the convection heat transfer is more important than that on the conduction heat transfer. The higher obstacle position in Cases 6 and 7 leads to the small value of the average Nusselt number. Moreover, the effect of Ha on average Nu in Case 1 at [Formula: see text] is more significant than other cases because the flow pattern in Case 1 is changed as increasing Ha.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call