Abstract

A sizeable proportion of adult pedestrians involved in vehicle-versus-pedestrian accidents suffer head injuries, some of which can lead to lifelong disability or even death. To understand head injury mechanisms, in-depth accident analyses and accident reconstructions were conducted. A total of 120 adult pedestrian accident cases from the GIDAS (German in-depth accident study) database were analyzed, from which 10 were selected for reconstruction. Accident reconstructions initially were performed using multi-body system (MBS) pedestrian and car models, so as to calculate head impact conditions, like head impact velocity, head position and head orientation. These impact conditions then were used to set the initial conditions in a simulation of a head striking a windshield, using finite element (FE) head and windshield models. The intracranial pressure and stress distributions of the FE head model were calculated and correlated with injury outcomes. Accident analysis revealed that the windshield and its surrounding frames were the main sources of head injury for adult pedestrians. Reconstruction results indicated that coup/contrecoup pressure, Von Mises and shear stress were important physical parameters to estimate brain injury risks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.