Abstract

There has been a resurgence in the field of magnetohydrodynamic (MHD) flow control in the past 20 years. An increasing demand for sustained hypersonic flight and rapid access to space, along with numerous mechanical and material advances in flight-weight MHD technologies, has aroused renewed interest in this subject area. As a novel application of MHD flow control in the thermal protection field, MHD heat shield system has been proved to be of great intrinsic value by lots of researchers in recent years. Although its theoretical feasibility has been validated, there are many problems that remain to be further investigated. Among those problems, the Hall effect is a remarkable one that may affect the effectiveness of MHD flow control. Considering the fact that it is not sufficient to evaluate the Hall effect by merely using the chemical reaction model implemented in the nonequilibrium flow simulation to calculate the Hall parameter, a parametric study is conducted under the assumption of simplified uniform Hall parameter. First, coupling numerical methods are constructed and validated to solve the thermochemical nonequilibrium flow field and the electro-magnetic field. Second, a series of numerical simulations of the MHD head shield system is conducted with different magnitudes of Hall parameter under two magnetic induction intensities (B0=0.2 T, 0.5 T). Finally, the influence of Hall effect on the performance of MHD heat shield system is analyzed. Results indicate that Hall effect is closely related to the wall conductivity. If the vehicle surface is regarded as an insulating wall, the heat flux variation is co-determined by varying the Lorentz forces within the boundary layer and the shock-control effect. Compared with the one neglecting the Hall effect, the heat flux with Hall effect is slightly mitigated as the increase of Lorentz forces in the boundary layer dominates when the stagnation magnetic induction intensity B0 equals 0.2 T. However, the heat flux is increased when B0 equals 0.5 T, because the decrease of shock stand-off distance dominates which increases the gas temperature outside the boundary layer. Moreover, in this case the larger the Hall parameter, the higher the heat flux will be. As for the conductive wall, the performance of MHD heat shield system becomes worse with the increase of Hall parameter, and while it is equal to or higher than 5.0, this system loses its effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call