Abstract

One of the important understandings of porous solids like metal-organic frameworks (MOFs) is their flexibility. Therefore, there are certain computational studies on flexible MOFs in the literature, primarily concentrating on MIL-53, UiO-66, and DUT-49. Here, investigation of another class of MOF, that is, [Ni(1,4-pyrazine)2(AlF5)]n, was shown to have guest-induced flexible characteristics; nevertheless, the mechanism for the emergence of flexibility is uncertain. We simulated the structural flexibility of [Ni(1,4-pyrazine)2(AlF5)]n, named ALFFIVE-Ni-pyr-TBP, upon adsorption of a guest molecule based on force fields using the molecular dynamics (MD) method and Monte Carlo (MC) simulations. As the first step towards understanding guest-induced flexibility, the MC simulations were performed by relaxing the framework and then further comparing it with the rigid framework. Subsequently, MD simulations were executed on the ALFFIVE-Ni-pyr-TBP framework with and without the guest molecules. In the case of moisture adsorption, the MOF system was identified to undergo a geometric transformation from trigonal bipyramidal to square bipyramidal geometry due to the strong interaction of oxygen of the water with the metal aluminum. However, some tilting in the pyrazine ligand was observed in the presence of all the guest molecules. Therefore, the detailed guest-induced flexibility described in this work could support the ALFFIVE series to be explored for future adsorption applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.