Abstract

A systematic investigation on the mechanisms of nucleation and surface morphology evolution was performed on ZnTe epilayers, deposited on chemically etched GaAs(001) by metalorganic vapor phase epitaxy. A 2D–3D growth mode transition was observed at around two ZnTe equivalent monolyers (ML), which was ascribed to a Stransky–Krastanow growth mode. The 3D growth behavior was correlated to the development of {n11}-type planes, leading to a surface ridging effect along the [11̄0] direction for 4000-ML-thick ZnTe epilayers. The use of a solid-on- solid kinetic roughening model allowed the identification of a mechanism that limits the self- organization of ZnTe nanosized islands, namely, the high density of kink sites found in non- atomically flat GaAs substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call