Abstract

High-frequency rotational motions of P-waves and coda waves were analysed using rotation rate sensors and strong motion array data from the 4 March 2008 TAiwan Integrated GEodynamics Research (TAIGER) explosion experiment in northeastern Taiwan. Theoretical and observational investigations focussed on the effects of this experiment on the free surface. The main goal of this study was to explore possible applications of combined measurements of artificial explosion-derived translational and rotational motions. Also investigated was the consistent ground rotation observed directly by rotation rate sensors and derived using translational seismic arrays. Common near-source high-frequency rotational motion observations and array-recorded translational motions from one shallow borehole explosion are analysed in this study. Using a half-space assumption of plane P-wave propagation across the recording site, we conclude that: (1) rotational motions induced by direct P-waves interacting with a free surface in theory can be used to estimate wave radial direction, velocity and anisotropic properties; (2) rotational motions derived from scattering are predominant among the observed rotations during the TAIGER explosion experiments and allow us to image the heterogeneous structure of the medium at the investigated site; and (3) rotation sensor measurements undertaken during TAIGER explosion experiments may be affected by cross-axis sensitivities, which need to be considered when using the data obtained during these experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.