Abstract

The solution-mediated phase transformation of α-form to γ-form glycine, including dissolution of metastable α-form, nucleation, and growth of stable γ-form during polymorphic transformation, was investigated using in situ attenuated total-reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Fourier transform Raman spectroscopy (FT-Raman). The mechanistic influence of operating parameters such as agitation speed, crystallization temperature, α-form seed concentration, and NaCl concentration on polymorphic phase transformation was examined. When the agitation speed, crystallization temperature, and NaCl concentration were increased, the polymorphic transformation process was improved due to the promotion of nucleation and growth of stable γ-form, in addition to the promotion of dissolution of metastable α-form. Moreover, the time to induce γ-form nucleation and complete conversion of α-form to γ-form was also reduced with increasing α-form seed concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call