Abstract

BackgroundGlucose-6-phosphate dehydrogenase (G6PD) deficiency is the most prevalent inborn disorder. This X-chromosome-linked recessive disease affects more than 400 million people globally, and is associated with haemolytic anaemia after medication with the anti-latent malaria drug, primaquine. To prevent malaria, the Republic of Korea (ROK) Army administers malaria chemoprophylaxis. Due to the previously low G6PD deficiency prevalence in the ROK, prior to primaquine administration, testing for G6PD deficiency was not mandatory. In this study, to evaluate the risk from malaria chemoprophylaxis in the ROK, G6PD deficiency prevalence was investigated.MethodsBlood specimens from 1632 soldiers entering training camp for the 3rd Infantry of the ROK Army were collected. CareStart™ Biosensor for G6PD and haemoglobin (Hb) was used to detect G6PD levels. G6PD variants using the DiaPlexC G6PD Genotyping kit (Asian type) and full-length sequencing were examined.ResultsOf 1632 blood specimens tested, none was observed to be G6PD deficient. The median value of all tested samples was 7.582 U/g Hb. An investigation of 170 G6PD DNA variants was analysed and categorized as partially low normal [n = 131, 30–80% (2.27–6.05 U/g Hb) of the median value], high [n = 3, > 150% (> 11.373 U/g Hb) of the median value], or normal [n = 36, 80–150% (6.05–11.373 U/g Hb) of the median value], and none was amplified by the DiaPlexC kit. Five silent mutations (C→T) in 131 partially low normal specimens were found at the 1311th nucleotide position by sequence analysis. Another 8 silent mutations (T93C) were also detected in 131 partially low normal specimens. Thus, it is inferred that these silent mutations could be related to G6PD activity.ConclusionsThis G6PD deficiency prevalence study, conducted among participants from the 3rd Infantry of the ROK Army, provided crucial evidence for the safety of malaria chemoprophylaxis. This study showed that the prevalence of G6PD deficiency among 1632 young soldiers was wholly absent. Although G6PD phenotypic mutations were not detected, many silent mutations (C1311T and T93C) were observed. Thus, it is inferred that malaria chemoprophylaxis is relatively safe against G6PD deficiency-mediated haemolytic anaemia. However, given the number of individuals whose G6PD were at the partially low normal range and the frequent detection of G6PD deficiency-related mutations, consistent monitoring of G6PD deficiency is needed.

Highlights

  • Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most prevalent inborn disorder

  • Glucose-6-phosphate dehydrogenase (G6PD) is an X-chromosome-linked enzyme involved in the pentose phosphate pathway, and it plays a pivotal role in defending against oxidative stress by generating Coenzyme nicotinamide adenine dinucleotide phosphate (NADPH) [1,2,3]

  • The sample size of this study is relatively small compared with the number of people who receive military-administered malaria chemoprophylaxis, this study indicates that G6PD deficiency prevalence is low enough that the risk of primaquine-induced G6PD deficiency-mediated haemolytic anaemia is relatively rare

Read more

Summary

Introduction

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most prevalent inborn disorder. This X-chromosome-linked recessive disease affects more than 400 million people globally, and is associated with haemo‐ lytic anaemia after medication with the anti-latent malaria drug, primaquine. To evaluate the risk from malaria chemoprophylaxis in the ROK, G6PD deficiency prevalence was investigated. Since 1997, the ROK Army has carried out chemoprophylaxis with chloroquine and primaquine to prevent malaria. The drug tolerance induced by malaria chemotherapy or chemoprophylaxis (chloroquine and primaquine) was less reported in ROK. Due to the risk of primaquine-induced G6PD deficiency-mediated haemolytic anaemia, the consideration for the use of other chemotherapy or chemoprophylaxis such as 8-aminoquinoline is needed [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call