Abstract

With the rapid development of the Global Navigation Satellite System (GNSS) and its wide applications to atmospheric science research, the global ionosphere map (GIM) total electron content (TEC) data are extensively used as a potential tool to detect ionospheric disturbances related to seismic activity and they are frequently used to statistically study the relation between the ionosphere and earthquakes (EQs). Indeed, due to the distribution of ground based GPS receivers is very sparse or absent in large areas of ocean, the GIM-TEC data over oceans are results of interpolation between stations and extrapolation in both space and time, and therefore, they are not suitable for studying the marine EQs. In this paper, based on the GIM-TEC data, a statistical investigation of ionospheric TEC variations of 15 days before and after the 276 M ≥ 6.0 inland EQs is undertaken. After eliminating the interference of geomagnetic activities, the spatial and temporal distributions of the ionospheric TEC disturbances before and after the EQs are investigated and compared. There are no particularly distinct features in the time distribution of the ionospheric TEC disturbances before the inland EQs. However, there are some differences in the spatial distribution, and the biggest difference is precisely in the epicenter area. On the other hand, the occurrence rates of ionospheric TEC disturbances within 5 days before the EQs are overall higher than those after EQs, in addition both of them slightly increase with the earthquake magnitude. These results suggest that the anomalous variations of the GIM-TEC before the EQs might be related to the seismic activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.