Abstract
The ghosting recovery mechanisms in multilayer selenium X-ray detector structures for mammography are experimentally and theoretically investigated. The experiments have been carried out under low positive applied electric field <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$(\sim 1\ {\rm V}/\mu{\rm m})$</tex></formula> . A ghost removal technique is investigated by reversing the bias polarity during the natural recovery process. The theoretical model considers accumulated trapped charges and their effects (trap filling, recombination, detrapping, structural relaxation and electric field dependent electron-hole pair creation), and effects of charge injection from the metal contacts. Carrier trapping in both charged and neutral defect states has been considered in the model. It has been found that the X-ray induced deep trap centers are charged defects. A faster sensitivity recovery is found by reversing the bias during the natural recovery process. During the reverse bias, a huge number of carriers are injected from the metal contacts, and fill the existing trap centers. This results in an abrupt recovery of the relative sensitivity. However, the relative sensitivity slightly decreases with time after this abrupt recovery due to the release of the trapped electrons as well as the long recovery time of the induced trap centers. The theoretical model shows a very good agreement with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.