Abstract

Geotextiles are often used in roadway construction as separation, filtration, and reinforcement. Their performance as reinforcement in geotextile-reinforced bases depends on geotextile–soil interaction. This paper investigates the geotextile–soil interaction under a cyclic wheel load using the Discrete Element Method (DEM). In this study, soil was modeled as unbonded particles using the linear contact stiffness model, and the geotextile was modeled as bonded particles. The micro-parameters of the soil and the geotextile were determined using biaxial tests and a tensile test, respectively. The influence of the placement depth and the stiffness of the geotextile on the performance of the reinforced base was investigated. The DEM results show that the depth of the geotextile significantly affected the degree of interaction between the geotextile and the soil. Under the applied cyclic vertical load, the geotextile developed a low tensile strain. The effect of the stiffness of the geotextile on the deformation was more significant when the geotextile was placed at a shallower location than when placed at a deeper location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.