Abstract
Gelatin composite films were prepared from gelatin solutions (10% w/v) containing multi-walled carbon nanotubes (MWCNT, 0.5, 1, 1.5, and 2% w/w gelatin) as nanofiller. The water solubility, water swelling, water uptake, water vapor permeability (WVP), mechanical, and antibacterial properties of the films were examined. Water solubility, water swelling, water uptake, and WVP for gelatin films were 45 ± 1%, 821 ± 42%, 45 ± 1.1%, and 0.4 ± 0.022 g mm/m2 kPa h, respectively. Incorporation of MWCNT caused a significant decrease in water solubility, water swelling, water uptake, and WVP. Gelatin/MWCNT films containing 1–1.5% MWCNT showed the lowest water vapor transmission. Tensile strength, elongation at break, and Young's modulus for gelatin films were 13.4 ± 1.2 MPa, 95 ± 5%, and 45.4 ± 7 MPa, respectively. Incorporation of MWCNT caused a significant increase in tensile strength and decrease in the elongation at break. The largest mechanical strength was found at 1.5% MWCNT. All gelatin/MWCNT films showed significant antibacterial activities against both gram-positive and gram-negative bacteria. Our results suggest that the gelatin/MWCNT composites films could be used as a very attractive alternative to traditional materials for different biomedical and food applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.