Abstract
Based on the coal self-preheating combustion technology, this research proposed a novel internal fluidized bed combustor (IFBC) with an internal separator for stable preheating of fuel. In order to verify feasibility and operation stability of IFBC, cold experiment, electrical capacitance tomography (ECT) and computational particle fluid dynamic (CPFD) simulation were performed in a laboratory-scale IFBC. The effects of superficial air velocity (Ug) and return valve structure on the operation and gas-solid flow characteristics were investigated. The results revealed that the CPFD prediction agreed well with the experiment values. The pressure balance curve presented an “8″ shape distribution, and the particle volume fraction (PVF) showed ‘core-annular’ distribution features. With the increase of Ug, the PVF in the standpipe increased, and the discharge pattern of the return valve changed from continuous discharge to intermittent discharge, and the solid circulation flux showed a trend of increasing first and then decreasing. With the decrease of the outlet opening of return valve (Φ), the gas–solid flow behavior in standpipe experienced a transition from gas leakage, stabilizing material seal, and blocking state. For Ug = 2 m/s, Φ = 50 %, an effective solid seal in the return valve was established and IFBC has a stable circulation and operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.