Abstract

Natural gas resources trapped in hydrate reserves worldwide are a new substitute for conventional energy. To safely and efficiently extract natural gas from hydrates, fields test and laboratory investigations were systematically conducted. Salinity is a significant factor impacting the exploitation of the marine hydrates. In this study, a two-dimensional cylindrical model was developed to determine the influences of salinity on gas recovery induced by depressurization and thermal stimulation. The results indicated that, with the same exploitation method, higher salinity accelerated the pressure-drop propagation rate and temperature increment spread, thereby promoting the hydrate dissociation rate and shortening the gas production process. Furthermore, thermal stimulation improved the average gas generation rate by almost five times that with depressurization at the same salinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.