Abstract

An essential part of proton exchange membrane fuel cells (PEMFCs) is the gas diffusion layer (GDL), which provides pathways for by-products to be removed from PEMFCs. One of the main properties of GDLs is porosity. The two widely used experimental methods for finding the porosity of GDLs are mercury intrusion porosimetry (MIP) and method of standard porosimetry (MSP). In addition to these methods, the porosity of GDLs can be calculated based on the high resolution 3D images that are acquired using X-ray microtomography (μXCT) as shown in recent studies (e.g., [7,12]). Despite the general success of using μXCT to measure GDL porosity, different porosity values have been reported for similar GDLs. These variations are due to different assumptions made for determining the surface of the sample, and hence, its external dimensions. In this research, current methods used for calculating porosity of GDLs from μXCT images are discussed, and a new surface identification method based on a rolling ball algorithm is introduced. The main advantage of this new method is that variations in surface topology or roughness are taken into account when calculating porosity. The new method is not only applicable to GDLs, but can be applied to characterize a wide range of highly porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.