Abstract

Intrabody Communication (IBC) is a technique that uses the human body as a transmission medium for electrical signals to connect wearable electronic sensors and devices. Understanding the human body as the transmission medium in IBC paves way for practical implementation of IBC in body sensor networks. In this study, we propose a model for galvanic coupling-type IBC based on a simplified equivalent circuit representation of the human upper arm. We propose a new way to calculate the electrode-skin contact impedance. Based on the model and human experimental results, we discuss important characteristics of galvanic coupling-type IBC, namely, the effect of tissues, anthropometry of subjects, and electrode configuration on signal propagation. We found that the dielectric properties of the muscle primarily characterize the received signal when receiver electrodes are located close to transmitter electrodes. When receiver and transmitter electrodes are far apart, the skin dielectric property affects the received signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call