Abstract

Experiment of a lateral semi-insulating GaAs photoconductive semiconductor switch (SI-GaAs PCSS) with different electrode gaps triggered by 900nm semiconductor laser is reported. With the biased voltage of 0.2KV~3.0KV, the linear electrical pulse is outputted by SI-GaAs PCSS. When laser energy is very low, the semi-insulating GaAs PCSS with 1.5mm electrode gap is triggered by laser pulse, the output electrical pulse samples is instable. When the energy of the laser increases, the amplitude and the width of the electrical pulse also increase. It indicates that a stable electrical pulse is obtained while laser energy is high. With the biased voltage of 2.8kV, the SI-GaAs PCSS with 3mm electrode gap is triggered by laser pulse about 10nJ in 200ns at 900nm. The SI-GaAs PCSS switches a electrical pulse with a voltage up to 80V. The absorption mechanism by Franz-Keldysh effect under high-intensity electric field and EL2 deep level defects is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.