Abstract

In cold forming of aluminum, various lubricants and coatings are typically used to reduce friction and wear, resulting in higher workpiece surface quality. The preparation of the workpiece surfaces and the cleaning of the products after the forming step generate a significant amount of environmentally hazardous residues. Therefore, current research focuses on the realization of dry metal forming processes. Instead of lubricants, modified tool surfaces can also optimize tribological conditions in the interaction zone of forming tool and workpiece. The applicability of these surfaces needs further examination before usage within an industrial manufacturing process. In this paper, different surface modifications are examined by using a conical tube-upsetting test setup that is based on the concept of the well-known ring-compression test. The conical tool surface homogenizes the relative displacement between tool and workpiece and suppresses the appearance of a neutral point. Conical tools from AISI H11 / DIN 1.2343 and AISI D2+ / DIN 1.2379+ are laser polished and functionalized with self-assembled monolayers. Friction conditions resulting from different surface modifications are analyzed and evaluated by the use of nomograms. Moreover, the applicability of different friction laws for dry metal forming of aluminum is investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call