Abstract
In the present age functionally graded piezoelectric materials (FGPM) are increasingly being used as actuators and sensors. In spite of the fact that the piezoelectric coupling coefficient for shear d15 has much higher value in comparison to d31 or d33, it is far less utilized for the applications due to complex nature of the shear induced vibrations. In this work three dimensional free vibration analysis of functionally graded piezoelectric material annular plates with free-free boundary conditions is presented. The annular FGPM plate is polarized along the radial direction while the electric field is applied along the thickness direction inducing flexural vibrations of the plate due to d15 effect of functionally graded piezoelectric materials. The material properties are assumed to have a power law variation along the thickness. COMSOL Multiphysics is used to obtain the natural frequencies and modeshapes. Detailed numerical study is performed to ascertain the effect of variation in power law index and various geometrical parameters. The results presented shall be helpful in optimizing the existing applications and developing the new ones utilizing the FGPM annular plates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.