Abstract

The evolution of complex fracture patterns of composite electrodes in all-solid-state batteries (ASSBs) during electrochemical cycles is one of the main phenomena driving capacity degradation. Such fracture patterns in active materials usually involve cracks with various orientations. While conventional wisdom usually treats fracture as ultimate failure of materials in many scenarios, the effect of crack in batteries is worth further investigation. Here, a concurrently coupled electro-chemo-mechanical model based on peridynamics has been developed to study fracture patterns and electrochemical performances of composite anodes during processes of charge and discharge. The framework consists of a classic bond-based peridynamic mechanical model, an electrochemical model, and a coupling technique to reflect the interaction between them in a bidirectional manner. The bond-based peridynamic mechanical model considers the active material’s elastic–plastic deformation and the solid electrolyte’s elastic deformation. The fracture energies of the active material, the solid electrolyte, and the interface are also incorporated into this model. The electrochemical model considers the volume expansion of the active material caused by the intercalation of lithium ions and the Butler–Volmer relation of charge transfer on the interface. Various parametric analyses are performed using this modeling framework to investigate the effects of external pressure, fracture energies of active material and solid electrolyte, and Young’s modulus on fracture patterns and electrochemical performances. It is found that different material parameters result in distinct fracture patterns in the active material with radial cracks or circumferential cracks, thus profoundly affecting the rates of charge and discharge. This work demonstrates the importance of considering the complex fracture patterns in electrode materials of batteries and provides insights for selecting more suitable electrode materials to mitigate capacity degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.