Abstract

The fracture toughness of HTPB propellant has a significant rate effect. In order to establish a fracture criterion considering rate effect for HTPB propellant, experiments were conducted at different loading rates. Two kinds of specimens were used to get the fracture properties. Stress intensity factor and J-integral were obtained by the single edge notched tension specimen test. A power law cohesive zone model was obtained by the experiment based inverse method. Through comparing we found that the stress intensity factor and J-integral cannot model the rate effect in fracture process. The cohesive zone model (CZM) has a constant critical separation distance at different loading rates and has a capability to model the rate effect during the crack initiation and propagation process. A finite element simulation in ABAQUS was given to demonstrate its capability to model the crack propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call