Abstract

The shock wave of a coal and gas outburst is a high-pressure and high-speed impact airflow formed rapidly after the outburst. The propagation destroys the ventilation facilities and causes the destruction of the ventilation system. The theoretical research on the outburst shock wave is of great significance. In order to deeply understand the formation mechanism of the outburst shock wave, this paper draws on the shock wave theory to theoretically analyze the microscopic formation process of the outburst shock wave. The main difference between the formation process of a coal and gas outburst shock wave and the formation process of a general shock wave is that the outburst shock wave has a solid–gas flow zone in the high-pressure zone. The calculation formulas of pressure, density, temperature and other parameters before and after the outburst shock wave are derived. After the outburst shock wave passes through, the pressure, temperature and density of the roadway air will change suddenly. The relationship expression between outburst gas pressure and outburst shock wave intensity is derived, which can reflect the role of pulverized coal in the formation process of a shock wave. In order to facilitate the understanding and calculation, the concept of equivalent sound velocity of coal-gas flow is proposed, and the direct calculation of the impact strength of a coal and gas outburst is attempted. This paper is helpful to improve the understanding of the essence of a coal and gas outburst shock wave. It is also of great significance to outburst disaster relief.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call