Abstract
Abstract Vehicle suspension plays a vital role in maintaining the center of gravity to achieve perfect balancing of the vehicle to provide the comfortable ride. While designing the suspension system of automobile, vibration is the main aspect to be considered. This paper aims to analyze the automobile front and rear suspension for a four wheeler using analytical and numerical approach. Existing details of the suspension is collected using the concept of reverse engineering. Natural and forced frequency of the front and rear suspension system is calculated theoretically based on the collected data's. The natural frequency and forced frequency is numerically computed for front and rear suspension. The amplitude of vibration is reduced by replacing the spring material and its forced frequency is reduced by 1.18 % and 1.56 % for front and rear suspension system respectively. This result reveals that low carbon steel has ability to reduce the forcing frequency and can produce comfort ride.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.