Abstract
Capacitive deionization (CDI) is attracting increasing attention as an emerging technology for the facile removal of ionic species from water. In this work, the feasibility of fluoride removal from low-salinity groundwaters by single-pass constant-voltage CDI was investigated and a model developed to describe the dynamic fluoride electrosorption behavior. Effects of operating parameters including charging voltage and pump flow rate as well as impact of fluoride and chloride feed concentrations on the effluent fluoride concentration and equilibrium fluoride adsorption capacity were studied and the obtained data used to validate the model. Using the validated model, the effects of various design parameters, including arrangement of multiple CDI cells, on fluoride removal were assessed. Single-pass constant-voltage CDI was found to be effective in removing fluoride from low-salinity groundwaters but, as expected, removal efficiency was compromised in waters of high salinity. The relatively simple electrosorption model developed here provided a satisfactory description of both fluoride removal and current evolution and would appear to be a useful tool for prediction of CDI performance over a range of operating conditions, cell arrangements and feed water compositions though scope for model improvement exists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.