Abstract

The interaction between turbulent jets, both swirling and nonswirling, and the ambient medium is studied on the basis of the results of measurements and numerical simulation. It is shown that the turbulent flow and the swirl give rise to induced ejection flow toward the jet. The mechanism of the jet action on the ambient medium is connected with a decrease in the static pressure in the jet, which, in turn, is due to either the flow swirl or the fluctuating flow in the mixing layer, when the static pressure reduces owing to the presence of velocity fluctuations. The former rarefaction mechanism is predominant in swirling jets and the latter predominates in jets without swirling. It is shown that the ambient medium inflow into the jet due to the rarefaction is independent in nature of the mechanism of the lowered pressure generation and that it is the kinetic energy of the jet that is the energy source for the induced flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.