Abstract

The study presented in this paper aimed to investigate the flexural behavior of geocell reinforcement by means of three-layered beam model testing. The geocell reinforcement was assumed to be a continuous beam sandwiched between two identical polywood beams. An analytical analysis was conducted to derive the closed-form solution to calculate the deflection of the three-layered beam model. A series of four-point bending tests using dead weights were carried out to test the three-layered beam models. Two geocell products of different dimensions and two types of infill materials, crushed stone and silty sand were tested in this study. Deflections of the layered beam models were measured along with the increment of applied loads. Testing results showed that the geocell reinforcement provides considerable resistance to flexural deformation, especially at higher load levels. The geocell with greater cell height to cell length ratio exhibited overall greater resistance to flexural deflection, especially when crushed stone was used as infill materials. Geocell reinforcements filled by crushed stone showed less flexural deformation than the geocells filled by silty sand. The modulus of the geocell reinforcement was calculated based on the closed-form solution and deflection measurements from the four-point bending tests. Ranges of elastic modulus were presented for the geocell reinforcement filled with compacted crushed stone and silty sand, which can be used as reference values for material property inputs in mechanistic-empirical design of geocell-reinforced pavements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call