Abstract
Corrosion products from water-cooled wall of a coal-fired power plant in China were finely collected and further split into samples of different layers along their growth direction. The physicochemical properties of all the samples were well characterized for understanding the mechanisms of high temperature corrosion. The results showed that sulfide type corrosion occurred at the water-cooled wall in the coal-fired power plant. Corrosion products were layered structures. The samples of the outer layer showed loose and porous structures, while the samples of the inner layer were dense structures. The major elemental components of the corrosion products of different layers were sulfur (S) and iron (Fe). The distribution of both S and Fe in the samples of different layers were varied, showing a decreasing trend in the samples from the inner layer to the outer layer. Iron sulfide and magnetite were the major mineral components of the corrosion products, and the content of the iron sulfide decreased in the samples from the inner layer to the outer layer. However, some alumina-silicate from the fly ash generated from the coal combustion was also found attached to the intermediate and outer layers of the corrosion products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.