Abstract

The impregnation of the fiber with a resin system, the polymeric matrix with the interface needs to be properly cured so that the dimensional stability of the matrix and the composite is ensured. A modified epoxy resin matrix was obtained with a reactive toughening agent and anhydride as a curing agent. The mechanical properties of the modified epoxy matrix and its fiber reinforced composites were investigated systematically. The polymeric matrix possessed many good properties, including high strength, high elongation at break, low viscosity, long pot life at room temperature, and good water resistance. The special attentions are given to the matrix due to its low out gassing, low water absorption and radiation resistance. In addition, the fiber-reinforced composites showed a high strength conversion ratio of the fiber and good fatigue resistance. The dynamic and static of the composite material were studied by thermo gravimetric analysis (TGA), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) with EDX. The influences of processing technique such as curing and proper mixing on the mechanical and interfacial properties were determined. The results demonstrated that the modified epoxy resin matrix is very suitable for applications in products fabricated with fiber-reinforced composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call