Abstract

In this paper, fiber motion near a planar wall was investigated using a planar shear flow apparatus. Fibers were placed (one at a time) perpendicular to the flow direction at various locations throughout the flow field. The location and orientation of each fiber versus time was measured, using an image processing system, until the fiber aligned with the flow direction. When the centroid of the fiber was located at distances greater than a fiber length from the wall, Jeffery's equations governing particle motion were verified. For distances less than a fiber length and greater than a fiber diameter from the wall, the fiber experienced an increased rate of rotation. In this regime, the motion of the fiber could be described by Jeffery's equations if an increased effective shear rate was used. The effective shear rate was found to increase logarithmically with decreasing separation distance. The wall effect was higher for longer aspect ratio fibers and was also a function of orientation; fibers oriented perpendicular to the wall rotated faster than those oriented parallel to the wall at the same separation distance. Once the fiber aligned with the flow direction, it ceased to rotate within the field of view. In this orientation, the wall had a stabilizing effect on the fiber. In efforts to relate the increase in shear rate to the aspect ratio of the fiber and the separation distance between the fiber and a solid wall, a translation model based on the work of De Mestre and Russel was explored. This model allows one to quantify the increase in shear rate experienced by the fiber due to the presence of a wall or obstruction in the flow field. However, the model has its limitations and care should be taken when applying this model outside its realm of validity. When compared to experimental data, the translation model provides a very good estimate of the increased shear rate experienced by the fiber when it is located less than 2/3 of a fiber length from a planar wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call