Abstract

ABSTRACTCloven hooves of ruminants adapt to diverse terrain, provide propulsive force and support the whole body during movement in natural environments. To reveal how the feet ensure terrain adaptability by choosing the proper configurations and terrain conditions, we model the feet of ruminants as an equivalent mechanism with flexion-extension and lateral movement decoupled. The upper part of the equivalent mechanism can flex and extend, while the lower part performs the lateral movement. Combination of the two parts can adapt to longitudinal slope (anterior-posterior) and transverse slope (medial-lateral), respectively. When one of two digits closes laterally, the workspace of the other decreases. The distal interdigital ligament between two digits limits their motion by elastic force and stores energy during movement. Differences in elastic energy variation of the ligament on different transverse slopes are characterized based on the configurations of two digits and the elastic energy between them. If the upper one of two symmetric digits is fixed, the foot landing on the grade surface (2°) shows greater capacity for absorbing energy; otherwise, level ground is the best choice for ruminants. As for the asymmetric digits, longer lateral digits enhance the optimal adaptive lateral angle. The asymmetry predisposes the feet to damage on the hard ground, which indicates soft ground is more suitable.

Highlights

  • As a result of natural selection, the ungulate herbivores such as horse, cattle and goat are specialized to bear a large amount of poorly digestible food and to maintain long-distance continuous movement (König and Liebich, 2004); ruminants, which have two main digits, are one of the most remarkable representatives and are widely distributed around the world (Maglio and Cooke, 1978)

  • The distal part of the foot performs the lateral movement, while the proximal part contributes to the flexion and extension

  • The interaction of two digits and the functions of the distal interdigital ligament based on linear spring hypothesis are analyzed

Read more

Summary

Introduction

As a result of natural selection, the ungulate herbivores such as horse, cattle and goat are specialized to bear a large amount of poorly digestible food and to maintain long-distance continuous movement (König and Liebich, 2004); ruminants, which have two main digits, are one of the most remarkable representatives and are widely distributed around the world (Maglio and Cooke, 1978). Reliable and strong feet, they adjust very well to the terrain on which they feed, mate and avoid predators; for example, cattle adapt to the soft ground The feet are ingenious, constituted by skeleton, multiple joints, ligaments, muscles, subcutis and some skin modifications (König and Liebich, 2004)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.