Abstract
The air pollution induced by urban traffic has addressed much attention in recent years as the rapid urbanization and the fast increase of vehicle number in urban area. In this study, we attempted to investigate the dispersion behavior of exhaust gas from exhaust pipe using computational fluid dynamics approach. The time-averaged CO2 concentration, velocity and temperature profiles along the centerline of the vehicular exhaust plume were simulated in varied situations. The computational results showed good agreement with the experimental data and the numerical model was validated to be an effective method to investigate the pollutant dispersion in the near-wake region of a vehicle. Based on it, the numerical simulations were extended to explore the impacts of the emit concentration, the emit direction and the incoming velocity on the flow dynamics and CO2 dispersion. The outputs indicated that the emit concentration could change the pollution level in the near-wake region of a vehicle and the emit direction may alter the spreading direction of the vehicular exhaust plume. The incoming velocity was found to have dominant influence on the dispersion of pollutant due to induced vortices and turbulence behind the vehicle. These findings are expected to provide important insight into evaluating the design and control strategies for alleviating mobile source emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.