Abstract

Background: Ethosomal vesicular system delivering a bioactive phytochemical, chrysin, was developed for transdermal delivery to increase its permeability and penetrability. Materials and Methods: Ethosomal system was optimized by keeping lecithin and ethanol concentration as independent variable while size and size distribution were taken as dependent variables. The optimized formulation was then subjected to various in vitro characterization parameters. Results: Ethosomal vesicle with an optimum size and polydispersity index of 134 ± 35 nm and 0.153, respectively, and entrapment efficiency of 80.05 ± 2.6% was considered as optimized and subjected to characterization. The scanning electron microscopy and transmission electron microscopy showed spherical entities with uniform surface whereas in vitro permeation and retention study showed the sustained mode of drug release and better skin retention as compared to hydroethanolic solution of the drug. The confocal laser scanning microscopy study reiterated high penetrability of vesicles into the skin. Histopathological and Fourier transform infrared spectroscopy analysis revealed its mechanism of penetration. Conclusion : The study thus demonstrated the ability of the ethosomal vesicles as surrogate carriers for delivery of bioactive agents through the skin for better amelioration of skin inflammation and other diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.