Abstract

Mesoporous MCM-41 was synthesized at room temperature using tetraethoxysilane (TEOS) with cetyltrimethylammonium bromide (CTAB) and employed as an effective adsorbent for the adsorption of methylene blue dye from aqueous solution. The as-synthesized MCM-41 was calcined at 250 and 550°C to study the relation between the surface area and pore volume with surfactant removal. The synthesized MCM-41 was characterized using thermo gravimetric analysis (TGA), X-ray diffraction (XRD) patterns, nitrogen adsorption/desorption isotherms and Fourier transform infrared (FT-IR) spectroscopy. The MCM-41 calcined at 550°C showed higher surface area (1,059 m2 g−1) with pore volume of 0.89 ml g−1 and was used for the investigation of adsorption isotherms and kinetics. The experimental results indicated that the Freundlich and Redlich-Peterson models expressed the adsorption isotherm better than the Langmuir model. In addition, the influence of temperature and pH on adsorption was also investigated. The decrease in temperature or the increase in pH enhanced the adsorption of dye onto MCM-41. A maximum adsorption capacity of 1.5×10−4 mol g−1 was obtained at 30°C. The kinetic studies showed that the adsorption of dye on MCM-41 follows the pseudo-second-order kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call