Abstract

In this work, for the first time, control over the position of maximum emission peak for fluorophore, using embedded tris(8-hydroxyquinoline) aluminum (AlQ3) complexes into different types of host materials, can be achieved. Moreover, the environmental and concentration effects on luminescent properties were studied. In this regard, different concentrations of AlQ3 were embedded into the poly(methyl methacrylate-co-butyl acrylate) (PMMA-co-PBuA) nanoparticles as organic host materials by emulsion polymerization. It is established that the dilution of AlQ3 in the polymer matrix leads to blue-shift of the luminescence maximum up to 0.32 eV compared to pure AlQ3. Moreover, AlQ3 was embedded in SBA-15 type mesoporous silica as an inorganic host material by physical adsorption. Finally, this functionalized mesoporous silica was incorporated into PMMA-co-PBuA transparent matrix by blending method to obtain Co-Poly-AlQ3-SBA-15 as organic–inorganic composite material. It was found that there is no significant wavelength shift on the maximum emission peak of the organic–inorganic composite at various concentrations of AlQ3-SBA-15. The prepared materials were characterized by powder X-ray diffraction (XRD), N2 adsorption–desorption, NMR, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and fluorescence spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.